Math 304 (Spring 2015) - Homework 2

Problem 1.
Suppose $A=\left(\begin{array}{ccc}1 & 3 & 4 \\ 0 & 2 & 5 \\ 1 & -1 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & 4 & 1 \\ -2 & 3 & 1 \\ 2 & 0 & 4\end{array}\right)$. Compute
(a). $A+2 B$,
(b). $A B$,
(c). $B A$,
(d). $(A B)^{T}$.

Solution:

$$
\begin{gathered}
A+2 B=\left(\begin{array}{ccc}
1 & 11 & 6 \\
-4 & 8 & 7 \\
5 & -1 & 10
\end{array}\right) \\
A B=\left(\begin{array}{ccc}
2 & 13 & 20 \\
6 & 6 & 22 \\
6 & 1 & 8
\end{array}\right) \\
B A=\left(\begin{array}{ccc}
1 & 7 & 22 \\
-1 & -1 & 9 \\
6 & 2 & 16
\end{array}\right)
\end{gathered}
$$

Problem 2.

Given $A=\left(\begin{array}{cc}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$, compute A^{2}, A^{3}, A^{4} and A^{5}. Recall that for any natural number k,

$$
A^{k}=\underbrace{A A \cdots A}_{k \text { times }}
$$

Solution:

$$
\begin{aligned}
A^{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), A^{3} & =\left(\begin{array}{cc}
-\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & -\sqrt{2} / 2
\end{array}\right), A^{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
A^{5} & =\left(\begin{array}{cc}
-\sqrt{2} / 2 & \sqrt{2} / 2 \\
-\sqrt{2} / 2 & -\sqrt{2} / 2
\end{array}\right)
\end{aligned}
$$

Problem 3.

Determine whether each of the following matrices has an inverse or not. If yes, find the inverse.
(a) $\left(\begin{array}{ccc}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3\end{array}\right)$

Solution:

(a) nonsingular. Its inverse is

$$
\left(\begin{array}{ccc}
-16 & -11 & 3 \\
7 / 2 & 5 / 2 & -1 / 2 \\
-5 / 2 & -3 / 2 & 1 / 2
\end{array}\right)
$$

(b) singular
(c) nonsingular. Its inverse is

$$
\left(\begin{array}{ccc}
1 & 2 & -3 \\
-1 & 1 & -1 \\
0 & -2 & 3
\end{array}\right)
$$

Problem 4.

Solve the following linear system

$$
\left\{\begin{array}{r}
x_{1}+x_{3}=1 \\
3 x_{1}+3 x_{2}+4 x_{3}=2 \\
2 x_{1}+2 x_{2}+3 x_{3}=1
\end{array}\right.
$$

Could you use part (c) of the previous problem to solve the system?

Solution: The usual way to solve a linear system is to apply Gaussian elimination process (i.e. use elementary row operations to arrive at a row echelon form).
In this question, since we coefficient matrix is the same matrix as part (c) of the previous question, we can proceed as follows.

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
3 & 3 & 4 \\
2 & 2 & 3
\end{array}\right), \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

We need to solve

$$
A \mathbf{x}=\mathbf{b}
$$

Since we know the inverse of A from part (c) of the previous question, we have

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

Therefore, we have

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right)
$$

Problem 5.

We know that if A and B are nonsingular, then $A B$ is also nonsingular. However, in general, the sum of two nonsingular matrices can be either nonsingular or singular.
(1) Find examples of (2×2) matrices A and B such that A and B are nonsingular, but $A+B$ is singular.
(2) Find examples of (2×2) matrices A and B such that A and B are nonsingular, and $A+B$ is also nonsingular, but $(A+B)^{-1} \neq A^{-1}+B^{-1}$.

Solution:

(1) for example,

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

then

$$
A+B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Both A and B are nonsingular, $A+B$ is singular.
(2) for example,

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

then

$$
A+B=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Notice that $A, B, A+B$ are nonsingular.

$$
A^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),(A+B)^{-1}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

So $A^{-1}+B^{-1} \neq(A+B)^{-1}$.

